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Abstract
Using an effective logarithmic–Gaussian pair potential that models the
interaction between star polymers, we compare the hypernetted chain (HNC)
and random phase approximations (RPA) for calculating the bulk structure
(including the Fisher–Widom and Lifshitz lines), thermodynamic functions and
phase diagram of a phase-separating binary fluid of star polymers, of two-arm
length ratio 2:1. Thereby, the stars considered here are equivalent to linear
chains in the mid-point representation of their effective interaction. We find
that at densities where the star coronas overlap, the quasi-exact HNC and RPA
give very similar results. Using a density functional approach, with a functional
which generates the RPA, we calculate properties of the inhomogeneous binary
fluid. We determine the surface tension and one-body density profiles at the free
fluid–fluid interface. For states well removed from the critical point the profiles
exhibit pronounced oscillations. For a purely repulsive planar wall potential
that models the effective potential between a star polymer and a hard wall, we
find a first-order wetting transition with the associated pre-wetting line.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When considering the problem of polymers in solution one is faced with a huge task if one
starts the theoretical description from the monomeric degrees of freedom. The problem is
greatly simplified if one can calculate an effective potential between the polymers, using
a single position coordinate for each polymer (typically the centre of mass or the mid-chain
monomer [1, 2]). The effective potential between the polymer chains is in general a many-body
potential, and is density dependent. However, one often finds that a density-independent pair
potential approximation for the interaction between the individual polymer chains is sufficient
to give a reasonable description of the bulk structure and thermodynamics [1, 3, 4]. With this
perspective, one is then able to bring to bear on the problem the machinery developed for simple
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fluids, e.g. using integral equation theories for bulk fluid structure and thermodynamics [5].
A natural tool for calculating the properties of inhomogeneous fluids is density functional
theory (DFT) [6]. In this paper we study a binary fluid of demixing star polymers. Star
polymers are made up of a number of polymer chains (referred to as arms) covalently bonded
to one common central core [7]. The arm number f , also called the functionality, is the physical
property that allows one to interpolate between linear chains ( f = 1, 2) and the colloidal limit
f � 1 in which the stars resemble hard spheres [1, 8–10].

We choose a binary mixture of star polymers with f = 2 arms (i.e., polymers) with
polymerization ratio N1:N2 = 2:1, in order to compare our results with those obtained
for the binary Gaussian core model (GCM) [11, 12]. The GCM is a model for polymers
in solution, modelling the effective potential between the centres of mass of the polymers
by a repulsive Gaussian potential [1, 3, 13–18]. The GCM pair potential is defined as
v(r) = ε exp(−r2/R2) where for polymers at room temperature in an athermal solvent,
ε � 2kB T and R � Rg , the polymer radius of gyration. Note that the GCM potential
remains finite for all separations r , representing the fact that in the underlying polymer system
the centres of mass can completely overlap, even if the individual monomers cannot. In this
paper we use an alternative representation for the chains: we choose their central monomers as
generalized coordinates for a coarse-grained description and employ accordingly the effective
interactions between central monomers in treating the polymers as ultrasoft colloids. In contrast
to the centre-of-mass potential, the central-monomer effective potential does have a divergence
as r → 0, albeit a very weak, logarithmic one. This property, derived in the pioneering work
of Witten and Pincus [19], stems from the scaling properties of the partition function of self-
avoiding random walks and can be generalized to stars with an arbitrary number of arms [19].
Thus, the divergence is caused by the self-avoidance that restricts the number of available
configurations of infinitely thin polymer threads and not by the direct monomer–monomer
interaction. We choose to focus on star polymers with f = 2 arms in order to compare with
the GCM because there is no difference between a star polymer with f = 2 arms and a simple
polymer; hence we are simply calculating the properties of a binary polymer solution. In
this case the star-polymer potential is an effective polymer pair potential between the central
monomers on each of the two polymers. Since it is the same underlying system that these two
effective potentials represent, these two different effective potentials should result in the same
thermodynamic properties and phase behaviour.

The present paper is laid out as follows. In section 2, we describe the model binary star-
polymer mixture. Then in section 3, by comparing with the more accurate HNC, we show that
at sufficiently high densities the bulk structure and thermodynamics of the binary fluid can be
approximated well by the simple RPA. The HNC is essentially exact for soft-core particles,
giving results almost indistinguishable from simulation for sufficiently high densities of GCM
particles [1, 17] and of star polymers with as many as 32 arms [20]. We calculate both the
HNC and the RPA fluid–fluid coexistence curves in the total density–composition plane, and
we find that at high densities, there is very little difference between the two. In the same
section we also calculate the Fisher–Widom (FW) line, i.e., the line in the bulk phase diagram
at which the asymptotic decay of the radial distribution functions (rdfs) gi j(r) crosses over
from monotonic to damped oscillatory, and the Lifshitz lines, which separate regions where the
partial structure factors Si j(k) have a maximum at k = 0 from those where there is a minimum
at k = 0. In sections 4 and 5 we use a Helmholtz free energy functional which generates
the RPA for bulk correlation functions to calculate the density profiles of the inhomogeneous
binary fluid. We calculate the density profiles, along with the surface tension, for the planar
interface between the demixed fluid phases in section 4, and then in section 5 we calculate the
density profiles of the binary fluid at a planar wall with a purely repulsive wall–fluid potential
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chosen to model the effective interaction between a star polymer and a hard wall. We find that
there is a first-order wetting transition, with the associated pre-wetting line, whereby the fluid
phase rich in the larger species completely wets the interface between the wall and the fluid
phase rich in the smaller species. Finally, in section 6 we summarize and conclude.

2. The model mixture

In [21, 22], Jusufi et al proposed a repulsive logarithmic–Gaussian form for the effective
potential between the centres of a pair (arm number f < 10) of star polymers in athermal
solvents. This potential features a weak, − ln(r) divergence for small separations r , reflecting
the fact that polymers are ultrasoft ‘colloids’. The Gaussian decay pertains for large r and
is identical in its functional form with the effective interaction between the centres of mass
(the GCM) [3, 14–16]. Note that for arm numbers f > 10, the Gaussian decay of the pair
potential is replaced by a Yukawa decay [8]. The multi-component generalization of the
logarithmic–Gaussian potential reads as

βvi j (r) = 5

18
f 3/2




− ln

(
r

σi j

)
+

1

2τ 2
i jσ

2
i j

for r � σi j ;
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2τ 2
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2
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exp[−τ 2
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where σi j is the corona diameter and τi j is a parameter of order 1/Ri j where Ri j is the radius
of gyration [21] and β = 1/kB T . In the present work we choose to set the arm number f = 2,
so that the star-polymer pair potential (1) is equivalent to the effective potential between the
central monomers on a polymer chain, and we can therefore compare the present ‘central-
monomer’ representation with the ‘centre-of-mass’ effective potential in earlier work [11, 12].
The arm number f only appears in the prefactor of the pair potential (1), so we expect that all
results presented will be qualitatively correct for f < 10. For the parameters of interaction
between unlike species in a binary mixture, i, j = 1, 2, we choose the mixing rules

σ12 = 1
2 (σ11 + σ22) (2)

and
1

τ 2
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22

)
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The additive rule, equation (2), is roughly what we expect for the effective cross-interaction
corona diameter σ12. The precise value chosen for σ12 does not have much of an effect on
the overall phase behaviour of the system; it simply sets the critical point total bulk density,
ρc, of the binary phase-separating mixture. It thereby plays a role similar to ε12 for the GCM
in locating the critical point [11, 16, 23]. The rule described by equation (3) plays a more
significant role in determining the behaviour of the binary fluid. Since τi j � 1/Ri j , we
use equation (3) to determine τ12, because this relation has been found in simulations when
considering the effective interaction between the centres of mass of the polymers [14, 16] (as
opposed to the central monomer in the present work), and is what was used in the previous
work [11, 12] on the inhomogeneous binary GCM.

In order to make a comparison with our earlier work [11, 12], we choose σ22/σ11 = 0.665
which is equivalent to a binary mixture of polymers of polymerization ratio3 N1:N2 = 2:1.
In [21], it was found that τii = 1.03/σii gives excellent agreement with simulation results
3 This arises from the scaling law R ∼ Nν connecting the spatial extent R of a self-avoiding polymer with its degree
of polymerization N , using the value ν = 3/5 of the Flory exponent.
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and, in addition, it brings about the best agreement for the second virial coefficient of polymer
solutions. Using these ratios along with equations (2) and (3), the model mixture parameters
are completely determined.

3. Bulk structure and phase diagram

We consider a system consisting of M1 long and M2 short chains enclosed in the volume V .
Accordingly, we define the partial densities ρi = Mi/V , i = 1, 2, of the components, as well
as the total density ρ = ρ1 + ρ2 and the concentration of the small component, x = ρ2/ρ. Due
to the athermal character of the solvent, the effective interactions are purely entropic, i.e., they
scale linearly with kB T and the thermal energy is the only energy scale of the problem, as is
clear from equation (1). Thereby, the temperature drops out of the problem as an irrelevant
variable and the thermodynamic space of the system is spanned by the partial densities or
equivalently the pair (x, ρ).

In order to determine the bulk structure of the binary fluid we use the hypernetted
chain (HNC) closure for direct pair correlation function, ci j(r), in terms of the pair correlation
function hi j(r) = gi j(r) − 1 in the Ornstein–Zernike (OZ) equation [5], which, for a multi-
component fluid, is

ci j(r) = −βvi j(r) + hi j(r) − ln[1 + hi j (r)]. (4)

We expect the HNC to be almost exact for describing the bulk structure of these soft-core
particles at densities where the cores of the particles start to overlap (ρσ 3 � 1.0). This
expectation is corroborated on the one hand from the known fact that for the one-component
GCM the HNC results are indistinguishable from the simulation results at these densities [1, 16–
18] and on the other hand by the finding that the HNC at high densities exhibits excellent
agreement with simulation for a pure star-polymer fluid with functionality f = 32 [20]4.

We define the partial structure factors Si j(k), i, j = 1, 2, of the mixture as

S11(k) = 1 + ρ1ĥ11(k);
S22(k) = 1 + ρ2ĥ22(k);
S12(k) = √

ρ1ρ2ĥ12(k),

(5)

where ĥi j(k) denotes the Fourier transform (FT) of hi j(r). In addition, we consider later the
concentration–concentration structure factor Scc(k), given by [24, 25]

Scc(k) = (1 − x)2S11(k) + x2S22(k) − 2x(1 − x)S12(k). (6)

In figure 1 we show the HNC partial structure factors for the binary fluid, comparing
also with the much simpler random phase approximation (RPA), which is given by ci j(r) =
−βvi j(r). The RPA closure to the OZ equations becomes more accurate as the density is
increased and is very reliable for interaction potentials that diverge slowly at the origin or are
bounded there [18, 26]. Indeed, the RPA is in principle a good candidate for use in examining
the structure of uniform and non-uniform fluids, when the condition

∫
d3r vi j (r) < ∞ is

fulfilled [10, 26]. For the case of the GCM one- and two-component systems, the validity
of the RPA has already been explicitly confirmed [11, 16, 17]. For non-bounded but slowly
diverging interactions, the RPA is a good approximation at least for the thermodynamics, but
it can also be accurate for the structure when the prefactor of the weakly diverging potential
is small [26]. For the case at hand, the prefactor of the logarithmically diverging potentials is
4 Due to the f 3/2-prefactor of the star–star potential, the f = 32 effective interaction is much steeper than the f = 2
one. The success of the HNC for this steeper interaction, then, guarantees its validity for the much softer interaction
considered here.
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Figure 1. The partial structure factors, calculated along two different thermodynamic paths in
the (x, ρ) plane of the star-polymer mixture obtained from the HNC (solid curves) and RPA
(broken curves). (a) S11(k) for fixed total density ρσ 3

11 = 5 and for different concentrations x of
species 2, as indicated on the plot. (b) Results for S22(k) along the same path. (c) S11(k) at fixed
concentration x = 0.7 and for increasing total densities; from bottom to top ρσ 3

11 = 1, 2, 3 and 4.
The inset shows the result for ρσ 3

11 = 5, a point lying close to the RPA critical (consolute) point
(xc, ρcσ

3
11) = (0.7095, 5.716 28); see also figure 3. The inset axes have the same labels as those of

the main plot. (d) As (c), but for the partial structure factor S22(k). Note that in all plots the k → 0
limits predicted by the RPA are larger than those from the HNC and the discrepancies become more
pronounced in the neighbourhood of the RPA critical point. At the critical point S11(k = 0) and
S22(k = 0) → +∞, whereas S12(k = 0) → −∞.

indeed small, (5/18) f 3/2 = 0.786 for f = 2, and thus the RPA should be valid at sufficiently
high densities; a hypothesis that we confirm.

The comparison in figure 1 reveals that the HNC and the RPA yield very similar structure
factors. The discrepancies between the two occur mostly for small k-values and are most
pronounced in the neighbourhood of the critical point. The existence of a spinodal (and thus
of phase separation) in the mixture is witnessed in both the HNC and the RPA by the increase
(and eventual divergence) of the structure factors at k = 0. As we move along a path of fixed
concentration x increasing the total density ρ, the RPA structure factors are seen to diverge
earlier than the HNC ones, a feature pointing to the fact that the RPA coexistence region will be
broader than the one predicted by the HNC approach. In addition, the fluid structure factors are
quite similar to the equivalent GCM partial structure factors Si j(k). The reason for this is that in
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Figure 2. The HNC rdfs gii (r) of the minority phases at high total densities. (a) Large particles,
g11(r), and (b) small particles, g22(r).

calculating Si j (k), one Fourier transforms the pair potentials, vi j (r), which involves integrals
of the form

∫
dr r sin(kr)vi j (r). Therefore, the weak divergence of the pair potential vi j (r) at

small r has little effect because it is suppressed by the multiplication with r sin(kr). It is rather
the fashion in which vi j (r) decays as r → ∞ that has greater influence on the structure and the
thermodynamics of the mixture [3, 27]: as we show later, the quantity v̂i j (0) ∝ ∫

dr r2vi j (r)

enters into the RPA equation of state and is thus decisive in determining the phase boundaries.
We now turn our attention to the partial rdfs gi j(r), i, j = 1, 2, in particular at high

densities and close to the borderlines x = 0 and 1. In these cases, the HNC approach and
the RPA yield practically identical results, so we examine the HNC results here. As shown
in figure 2, we find a signature of ‘clustering’ in the rdfs gi j(r) of the minority phase, i.e.,
the development of a pronounced maximum. This feature was also found for the GCM [23],
but there the maxima are at r = 0. In the present model, gi j(r) does not have a maximum at
r = 0, because our potentials have the logarithmic divergence at r = 0. Rather, the minority
phase rdfs gii(r), have a peak in the range σii/2 � r � σii . Since σii is the diameter of the
i -species and r denotes distances between the central monomers, this corresponds, roughly,
to the centres of mass accumulating in one region and the polymers in the minority phase
building clusters. There is therefore good agreement between the centre-of-mass and the
central-monomer representation. Moreover, this clustering effect, which is more pronounced
for the large polymers, is an additional signature of phase separation.

Next we consider the overall phase behaviour of the mixture and make a comparison
between the binodal obtained from the HNC equation of state and that obtained from the
particularly simple RPA equation of state. The simplest mean-field Helmholtz free energy
functional for the mixture reads as

F[{ρi }] = Fid [{ρi}] + 1
2

∑
i j

∫
d3r1

∫
d3r2 ρi (r1)ρ j (r2)vi j(|r1 − r2|) (7)

whereFid is the ideal gas part. This functional replaces all excess free energy contributions with
the mean-field interaction terms that are bilinear in the density profiles ρi(r) of the components.
Such an approximation is expected to be accurate for the system at hand, which is deprived of
hard cores and of significant short-range, excluded-volume correlations, in particular at high
densities when the particles interact with a very large number of ‘neighbours’. Recalling that
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the two-body direct correlation functions are given by

c(2)
i j (r1, r2) = −βδ2(F[{ρi}] − Fid [{ρi}])

δρi(r1) δρ j(r2)
(8)

it follows that

c(2)

i j (r1, r2) = c(2)

i j (|r1 − r2|) = −βvi j(|r1 − r2|) (9)

which is the standard RPA approximation. In the bulk mixture the densities are constants,
ρi (r) = ρi . Expressing these in terms of the total density ρ and the composition variable x ,
we can write the bulk Helmholtz free energy per particle, f̃ , as [11, 16]

f̃ (ρ, x) = f̃id(ρ, x) + 1
2 ρ[(1 − x)2v̂11(0) + 2x(1 − x)v̂12(0) + x2v̂22(0)]. (10)

The ideal contribution, f̃id(ρ, x), contains the ideal free energy of mixing, β−1{x ln(x) + (1 −
x) ln(1 − x)}, as well as an irrelevant term with linear-in-ρ dependence. v̂i j(0) is the q = 0
limit of the FT of the pair potential:

v̂i j (0) =
∫

d3r vi j(r). (11)

Note that equation (10) is equivalent to calculating f̃ from the compressibility route. We now
Legendre transform to obtain the Gibbs free energy per particle g = f̃ + Pv, where v = 1/ρ

is the volume per particle and the pressure is given as P = −(∂ f̃ /∂v)x . The common-tangent
construction on g yields the binodal which is plotted along with the spinodal in figure 3. We
find that the binodal has a very similar shape to that found for the GCM [11], since they have
the same form for the bulk Helmholtz free energy (10), but they differ in where they locate
the critical point. For the present star-polymer model we find the critical point at ρcσ

3
11 = 5.7

where the star-corona diameter σ11 � 1.32Rg
11, with Rg

11 the radius of gyration [21, 28]. On
the other hand, for the GCM studied in [11] we found ρc R3

11 = 5.6 with radius R11 � Rg
11.

We also determined the HNC phase diagram. The HNC closure breaks down before a
spinodal is reached, as is well known from previous studies [29, 30]. However, this poses
no difficulties in calculating the HNC binodals5. For all points in the region where the HNC
converges, we calculate the pressure P and partial chemical potentials µ1, µ2 on a grid. For
the HNC, this calculation is local, i.e., one needs no thermodynamic integration to obtain µ1

and µ2 [23, 31]. From µ1 and µ2, the Gibbs free energy per particle g = (1 − x)µ1 + xµ2

is readily obtainable. We perform a 2D interpolation of the pressure results to obtain P(x, ρ)

as a function of two variables for any x and ρ, and on this surface we determine the isobar
curves P = constant. We then draw the Gibbs free energy along the isobars to obtain gP(x),
where the subscript now denotes that P is fixed. For those pressures for which gP(x) is a
convex function of x , the system is in a single (mixed) state. For those for which it is not, the
common-tangent construction determines the coexistence concentrations and densities. The
region in which the HNC has no solutions presents no difficulties. For the isobars that intersect
the borderline of this region, we simply have gP(x) with two ‘branches’ on either side of the
prohibited domain and we perform the common-tangent construction on those.

The HNC binodal is plotted in figure 3 along with the RPA one. It can be seen that
there is very good agreement between the two. The RPA binodal is slightly broader but the
discrepancies become quickly suppressed in moving away from the critical point. If one
interprets the total density as an ‘inverse temperature’ and the concentration as a ‘density’
of a hypothetical one-component system, then the phase diagram can be regarded as that

5 We found, in fact, that the locus of points on which the HNC fails to converge is a curve that runs close to the RPA
spinodal and in the U-shaped region in the high-density part of this curve the HNC has no solutions.
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Figure 3. (a) The RPA spinodal and binodal lines for the star-polymer mixture (dotted and solid
curves) along with the HNC binodal (dashed curve). x is the concentration of species 2, the smaller
component. The straight segments denote HNC tie lines between coexisting fluid phases whose
coordinates are given by the closed circles at their ends. (b) The RPA phase diagram along with the
FW line (light solid curve) and the Lifshitz curves of the various structure factors. The left-hand
branch of the FW line lies close to the Lifshitz curve for S11(k) (short-dashed curve) while the
right-hand branch lies close to the Lifshitz curve for S22(k) (long-dashed curve). The dash–dotted
line is the Lifshitz line for Scc(k). The points A–G on the right-hand branch of the binodal are
located at total densities ρσ 3

11 = 8, 10, 12, 14, 16, 18 and 20, at which the free interface density
profiles will be calculated in section 4. The grey lines are RPA isobars through the points A–G and
their intersections with the left-hand branch of the binodal yield the state points coexisting with
A–G. The open circle denotes the RPA critical point.

corresponding to ‘liquid–gas’ coexistence. The RPA is then equivalent to the mean-field
approximation, which usually delivers critical temperatures higher than the true result. That
the RPA critical density is lower than the HNC one can be explained by means of this analogy.
The largest discrepancies between HNC and RPA occur close to the critical point but these are
less than 10% for the location of the binodal on the density axis. Otherwise, the remarkable
accuracy of the RPA can be understood from the fact that the phase separation for our binary
fluid occurs at a sufficiently high density that the differences between the RPA and HNC
routes to the bulk structure and thermodynamics are indeed very small. We demonstrate this
in figure 4, where we show representative results for the chemical potentials and the pressure
obtained by the two approaches. We note that Finken et al [23] have also made comparisons
between the RPA and HNC results for the binodal in the case of a binary mixture of repulsive
GCM particles. They report larger differences between the two theories than we find here. At
present it is not clear why the differences should be larger for GCM particles than for the (very
similar) logarithmic–Gauss potentials that we consider in the present study.

More detailed information about the nature of the interparticle correlations in the mixture
can be obtained by investigating the FW line [32]. The FW line is determined by the asymptotic
decay, r → ∞, of the total pairwise correlation functions hi j (r). It is the locus of points in
the phase diagram at which the ultimate decay of the pair correlation functions crosses over
from monotonic (OZ-like) to damped oscillatory. The genesis of the FW line in mixtures is
described in [11, 33]. In Fourier space the OZ equations for hi j (r) in a two-component liquid
are

ĥi j (q) = Ni j (q)

D(q)
(12)
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Figure 4. Comparison of the HNC and RPA results for the partial chemical potentials (a) and the
total pressure (b), at fixed concentration x = 0.5 and increasing total density ρ.

where the numerators are given by

N11(q) = ĉ11(q) + ρ2[ĉ2
12(q) − ĉ11(q)ĉ22(q)];

N22(q) = ĉ22(q) + ρ1[ĉ2
12(q) − ĉ11(q)ĉ22(q)];

N12(q) = ĉ12(q),

(13)

and the denominator is

D(q) = [1 − ρ1ĉ11(q)][1 − ρ2ĉ22(q)] − ρ1ρ2ĉ2
12(q), (14)

where ĉi j(q) is the FT of ci j(r). Inverting the FT, and noting that ĥi j (q) is even, we can write

rhi j (r) = 1

4π2i

∫ ∞

−∞
dq q

Ni j (q)

D(q)
exp(iqr) (15)

which can be evaluated by contour integration [33]. Using the RPA approximation for the
direct pair correlation function, ĉi j(q) = −βv̂i j(q), greatly facilitates the calculation of the
FW line, since the FTs v̂i j(q) are analytic (see the appendix). The singularities of ĥi j(q) are
simple poles. Choosing an infinite radius semi-circle in the upper half of the complex plane,
we obtain

rhi j (r) = 1

2π

∑
n

Ri j
n exp(iqnr) (16)

where Ri j
n is the residue of q Ni j (q)/D(q) for the nth pole at q = qn. The qn are solutions of

D(qn) = 0 and there are normally an infinite number of poles. If a pole lies on the imaginary
axis, qn = iα0, it contributes a pure exponential term of the form exp(−α0r) to the sum in
equation (16). Poles lying off the imaginary axis occur in conjugate pairs qn = ±α1 + iα̃0 and
such a pair contributes a damped oscillatory term of the form exp(−α̃0r) cos(α1r−θ) to the sum
in equation (16). The longest range decay of hi j(r) is determined by the pole or the conjugate
pair of poles with the smallest imaginary part. If α0 < α̃0, the longest range decay is monotonic
(pure exponential); otherwise it is damped oscillatory. Since all three ĥi j(q) have a common
denominator D(q), it follows that all three hi j(r) decay ultimately with the same decay length
and wavelength. The residues do depend on the particular species but these determine only the
amplitudes and phases of the ultimate decay [33, 35, 36]. Similar arguments [33] apply for the
one-body density profiles in a binary mixture and the same quantities α0, α̃0 and α1 determine
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the ultimate decay into bulk of the one-body density profiles at interfaces. The FW line is the
crossover line in the phase diagram where α0 = α̃0. The FW line for the present mixture is
displayed in figure 3. We find that the FW line is almost exactly the same in shape and location
in the phase diagram as that found, also using the RPA, for the binary GCM corresponding to
a 2:1 length ratio mixture of polymers [11]. We also find the same cusp in the FW line (bottom
right-hand corner, figure 3(b)) and the new line found in [11]. The latter denotes the crossover
from oscillatory decay with one wavelength, corresponding to the length scale associated with
one of the particle species, to oscillatory decay with another wavelength, determined by the
size of the other species of particles. Because the RPA binodal and FW lines are so similar
in the present model to those found for the binary GCM [11], we expect the trends found as
particle size asymmetry was varied in the GCM to carry over to the present model, i.e., as the
size asymmetry is increased, the location of the critical point should move towards the side
of the phase diagram rich in the smaller species and the cusp in the FW line should move to
this side also. Note also that the pole determining the asymptotic decay of gi j(r) also sets
the common bulk correlation length: ξ = 1/α0 [33]. It is possible to calculate the leading
pole from numerical solutions for the HNC [36]; however, we expect the asymptotic decay
to be very well captured by the RPA, and the dominant HNC pole to be very similar in value
to that obtained from the analytically tractable RPA, as was the case for the one-component
GCM [11, 37].

The Lifshitz line [38, 39]6 separates the region in the phase diagram in which Si j (k) has a
local maximum at k = 0 (as occurs near a critical point or spinodal) from that in which it has
a local minimum at k = 0. Making a small-k expansion of the partial structure factors:

Si j (k) = a(ρ, x) + b(ρ, x)k2 + O(k4), (17)

and examining the sign of the term b(ρ, x), one sees that the Lifshitz line is the locus of
points b(ρ, x) = 0. The Lifshitz lines for two of the partial structure factors are displayed in
figure 3 and their shapes are similar to those of branches of the FW line. This is because their
locations are driven by the proximity of the spinodal, which forces S11(k) and S22(k) to have
maxima at k = 0. These maxima survive as long as the pure imaginary pole (away from the
spinodal) is the dominant one. Close to the crossover to damped oscillatory decay in hi j(r),
at the FW line, the maximum turns into a minimum. Hence the Lifshitz and the FW lines
are closely related to one another but they are not identical. Since phase separation in liquid
mixtures is driven by concentration fluctuations, it is natural to examine the Lifshitz line for
the concentration–concentrationstructure factor Scc(k) defined in equation (6). As can be seen
in figure 3, the domain enclosed by the Lifshitz line, in which Scc(k = 0) is a maximum, is
broader than the domain in which both S11(k = 0) and S22(k = 0) are local maxima. This
is the effect of the term −2x(1 − x)S12(k). In fact, the Lifshitz line for Scc(k = 0) does not
close: even at very low densities, there survives a domain, in this case 0.55 � x � 0.77, in
which Scc(k) has a small maximum at k = 0. The Lifshitz line for S12(k) runs similarly to the
one for S11(k), but the regions it separates are inverted with respect to the ones for S11(k) and
S22(k): above the Lifshitz line for S12(k), the latter has a local minimum at k = 0 and below
it a local maximum7, whereas the situation is inverted for the other two.

6 We note that for microemulsions both the Lifshitz and the FW line are used to signify the crossover from the
‘sponge phase’ to the ‘random phase’ (there is no sharp thermodynamic transition between the two; hence one resorts
to structural criteria) [38, 39]. The locations of the two lines in the phase diagram are related, as in the present
fluid. We note also that in the microemulsion literature the FW line is referred to as the disorder line [38], the latter
terminology being the common one for Ising models [35, 40].
7 Note that at the spinodal, S12(k = 0) diverges to minus infinity, not to plus infinity as do S11(k = 0) and S22(k = 0).
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4. The free fluid–fluid interface

In this section we calculate the inhomogeneous one-body density profiles of the fluid at the
planar interface between two coexisting phase-separated liquid phases and the corresponding
surface tension γ , using the same DFT (7) as generates the RPA. We work with the grand
potential functional

�V [{ρi}] = F[{ρi }] −
∑

i

∫
d3r (µi − Vi(r))ρi (r), (18)

where µi is the chemical potential of species i = 1, 2, and determine the free interface density
profiles by setting the external potentials Vi(r) = Vi(z) = 0. Within the present mean-field
approach the resulting profiles ρi (z), with z normal to the interface, are non-trivial, i.e., the
interface has a finite width. Minimizing (18) and using (7) for F[{ρi}] yields a pair of coupled
Euler–Lagrange equations for the profiles. Due to the planar symmetry these can be reduced
to a pair of one-dimensional equations:

µi − Vi (z) = µi,id (ρi(z)) +
∑

j

∫
dz ′ ρ j (z

′)ṽi j(|z − z′|), for i, j = 1, 2 (19)

where the ideal gas chemical potential µi,id(ρi ) = β−1 ln(�3
i ρi ) (�i is the thermal de Broglie

wavelength) and

ṽi j (|z − z′|) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy vi j (|r − r′|). (20)

Equations (19) can be solved self-consistently for the density profiles of the two species. We
find results very similar to those for the binary GCM [11]. Once again, the weak divergence
of the pair potential vi j (r) has little effect. When (1) is substituted into (20) we find that
ṽi j (z) is finite for all z: on integrating over the x–y plane the − ln(r) divergence in vi j (r)

yields a term ∼z2 ln(z), which is finite as z → 0. In fact ṽi j (z) resulting from equations (1)
and (20) has a very similar shape to that resulting from substituting vi j (r) = εi j exp(−r2/R2

i j )

(GCM) into (20). The resulting density profiles for the coexisting states marked in figure 3(b)
are displayed in figure 5. We find pronounced oscillations in the density profile of the larger
species, ρ1(z), for states well removed from the critical point, similar to those that we found
for the GCM [11]. For states B–G (see the phase diagram, figure 3) both density profiles ρ1(z)
and ρ2(z) exhibit non-monotonic decay into the bulk phase which is rich in species 1. On the
other side of the interface, approaching the bulk phase rich in species 2, magnification shows
that both ρ1(z) and ρ2(z) are non-monotonic for states E–G. For state A, closer to the critical
point, there is no sign of oscillations on either side of the interface.

Within the context of DFT it is the location of the FW line that determines the crossover
from monotonic to damped oscillatory decay in the free interface density profiles [11, 35, 41].
On moving along the binodal away from the critical point, and crossing the intersection with
the FW line, there are bulk states (on the binodal) at which the pair correlation functions,
hi j (r), decay in a damped oscillatory fashion. Since it is the same pole in the structure factors
that determines the asymptotic decay of the one-body density profiles, ρi (r), for these states
on the oscillatory side of the FW line one should expect damped oscillatory decay of ρi (r)

into the bulk phase. For the present model the FW line intersects the binodal on both sides, so
when both bulk coexisting states are on the oscillatory side of the FW line, then the asymptotic
decay of the density profiles will be damped oscillatory on both sides of the interface [11].



12042 A J Archer et al

15 20 25 30 35
z /σ11 z /σ11

0

5

10

15

20
ρ 1σ

113

A
B
C
D
E
F
G

(a)

15 20 25 30 35
0

5

10

15

20

ρ 2σ
113 22 23 24 25

0.18

0.19

0.2

0.21

26 27 28 29
19.97

19.98

19.99

20

B

C

D

E

F

G

G

G

(b)

Figure 5. The fluid–fluid interface density profiles, calculated at states A–G in the phase diagram
(see figure 3(b)). State A lies near the critical point and state G, for which the interface is
much sharper, far away from the critical point. These states correspond to total bulk densities
ρσ 3

11 = 8, 10, 12, 14, 16, 18 and 20 in the phase rich in species 2. (a) Density profiles of species 1,
the larger species. (b) Density profiles of species 2. The insets show magnified regions for state G.
Note the oscillations on both sides of the interface.

Having calculated the equilibrium free interface density profiles we can determine the
surface tension, which is defined as the excess grand potential per unit area and can be written
as

γ =
∫ ∞

−∞
dz (P + ω(z)), (21)

where P is the bulk pressure at coexistence and ω(z) is the grand potential density obtained
from equations (7) and (18) with Vi(z) = 0. The reduced tension γ ∗ = βγ σ 2

11 is
plotted in figure 6 for the interfaces corresponding to figure 5. We have chosen to plot
γ ∗ versus the order parameter (ρA

1 − ρB
1 )σ 3

11, where ρA
1 is the bulk density of species 1 in

phase A, rich in species 1, and ρB
1 is the same quantity in phase B, poor in species 1 [11, 42].

Mean-field arguments imply that γ ∗ should vanish as (ρA
1 − ρB

1 )3 on approaching the critical
point and this is confirmed by our numerical results (see the inset to figure 6).

We can obtain an estimate for the surface tension of a phase-separated mixture of ‘real’
star polymers by choosing γ ∗ = 5, corresponding to a state well removed from the critical
point, and setting T = 300 K and σ11 = 20 nm. We find γ = 52 µN m−1, the same as
for the GCM [11]. This tension is one order of magnitude greater than that calculated and
measured for a colloid–polymer mixture [41, 42], but is two orders of magnitude smaller than
the tensions of simple atomic fluids near their triple points.

The numerical values of γ ∗ determine whether we can expect to observe oscillatory density
profiles in a more accurate treatment of the free interface. As the present mean-field functional
does not include the effects of capillary-wave fluctuations, one needs to make an estimate of
these fluctuation effects on oscillatory structure [6]. Oscillatory free interface density profiles
were found for the GCM [11], and also in an earlier DFT treatment of the free interface [35].
For thermodynamic states well away from the bulk critical point, Evans et al [35] found
much smaller oscillations on the liquid side of the planar liquid–vapour density profiles for
a one-component square-well fluid. Later Brader et al [41] found pronounced oscillations
with a similar relative amplitude to those in the present model, on the colloid-rich side of
the free interface, in a DFT treatment of a model colloid–(ideal) polymer mixture in which
colloid–colloid and colloid–polymer interactions are hard-sphere-like. Oscillatory profiles
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Figure 6. The reduced surface tension, γ ∗ = βγ σ 2
11, at the planar free interface, plotted against

the order parameter (ρA
1 − ρB

1 )σ 3
11, the density difference in species 1 between the two phases,

which vanishes at the critical point. The line joining the data points is a guide to the eye. Inset:
a double-logarithmic plot of the same quantities, demonstrating the power-law dependence of γ ∗;
the straight line has gradient 3.

have also been found in molecular dynamics simulations by Toxvaerd and Stecki [43] for a
model equimolar binary mixture in which the 11 and 22 potentials are identical, truncated
Lennard-Jones, with the 12 potential being purely repulsive. Very recently Chacón et al
[44] found very pronounced oscillations on the liquid side of the planar liquid–gas interface
in Monte Carlo simulations of a liquid–metal described by a pair potential model. In our
earlier work on the GCM free interface [11] we addressed the issue of whether capillary-wave
fluctuations would destroy the layering structures that we found in the DFT treatment of the
interface. The situation for the present model is the same as for the GCM; i.e., we assume that
DFT describes the ‘bare’ or ‘intrinsic’ profiles—which might be oscillatory, as in the present
case—and that fluctuations can be unfrozen on these. If one performs a Gaussian smearing
of the profiles over the interfacial thermal roughness ξ⊥ for a density profile with decaying
oscillations of wavelength 2π/α1 and decay length α̃−1

0 , these quantities are unaltered but the
amplitude is reduced by a factor exp[−(α2

1 − α̃2
0)ξ

2
⊥/2] [33, 45]. The roughness ξ⊥ depends

on the interfacial area L2
x and on the external potential, e.g. gravity. Ignoring the latter, one

finds that the amplitude of the oscillations in the density profile should be reduced by a factor
(Lx/ξ)−ω[(α1/α̃0)

2−1] where ω ≡ (4πβγ ξ2)−1 is the standard dimensionless parameter which
measures the strength of capillary-wave fluctuations [6] and ξ ≡ (α̃0)

−1. The larger the
value of ω ∝ 1/γ ∗, the more damped are the oscillations. The power-law dependence on
the interfacial area L2

x that this unfreezing procedure predicts is supported by the simulations
of Toxvaerd and Stecki [43] and those of Chacón et al [44, 46]. For the present model, for
states where the oscillations in the DFT profiles are very pronounced, as with the GCM, the
calculated exponent in the power law is small, typically −0.1, which implies that the amplitude
of the oscillations at these particularly ‘stiff’ interfaces should only be weakly damped by the
capillary-wave fluctuations. As emphasized in [11] the reduced surface tension γ ∗ far from
the critical point is very large in these liquid mixtures, since the coexisting phases correspond
to a very high pressure and there are very large density differences, for the individual species,
between the phases—see figure 3. Such large values of γ ∗ do not normally arise at the liquid–
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vapour interface of simple, one-component fluids where the solid phase intervenes at low
temperatures. However, the model considered by Chacón et al [44] is designed to suppress
the ratio of the melting temperature Tm to the critical temperature Tc, i.e., Tm/Tc � 0.2, and
in these circumstances γ ∗ can be large and then damping of the oscillations is weak [46].

5. Star polymers at a hard wall: wetting behaviour

By integrating the normal component of the osmotic pressure in the interior of the star polymer
along the area of contact between the star and the wall, Jusufi et al [21] were able to calculate
the force, F(z), and therefore the potential acting between a star polymer and a hard wall,
with z denoting the distance from the star centre to the planar wall surface. The force scales
as F(z) ∼ 1/z as z → 0, and for z → ∞ the form F(z) ∼ (∂/∂z) erf(κi z) pertains, where
erf(x) = (2/

√
π)

∫ x
0 dt exp(−t2) is the error function and κ−1

i is a length scale of order the
radius of gyration of the polymer. For a star polymer with f = 2, the value κi = 1.16/σii

was found to give the best fit to simulations [21]. By matching these two forms at z = σii /2
and then integrating to get the potential, Jusufi et al [21] proposed the following form for the
effective potential Vi (z) between a star polymer and a hard, planar wall:

βVi(z) = � f 3/2




− ln

(
2z

σii

)
−

(
4z2

σ 2
ii

− 1

)(
ψi − 1

2

)
+ ζi for z � σii/2;

ζi erfc(κi z)/erfc(κiσii/2) for z > σii/2,

(22)

where erfc(x) = 1 − erf(x) is the complementary error function, ψi = (1 + κ2
i σ 2

ii/2)−1 is a
parameter chosen to guarantee the continuity of the local osmotic pressure in the interior of
the star polymer and

ζi = 2
√

πψi

κiσii
erfc

(
κiσii

2

)
exp

(
κ2

i σ 2
ii

4

)
. (23)

The final parameter �, which has a weak f -dependence, is also chosen to match the simulation
results, giving � = 0.46 when f = 2 [21].

By using equation (22) for the external potential in equation (18) we are modelling the
binary star-polymer fluid at a hard wall. We found that for certain states approaching the
binodal on the side poor in species 1, the larger particles, a thick wetting layer of the coexisting
phase rich in species 1 was adsorbed at the wall, the thickness of which diverged at the
binodal. Typical wetting density profiles are displayed in figure 7. These were calculated
along a constant-density path ρσ 3

11 = 7.0, approaching the binodal (path A in figure 8). Upon
investigating higher total densities we found that there is a first-order wetting transition [47],
above which the wall no longer wets completely. The point on the binodal at which the
wetting transition occurs, the wetting point, is at (x, ρσ 3

11) = (0.959, 9.15). Descending
from the wetting point is a short pre-wetting line, ending in a pre-wetting critical point at
(x, ρσ 3

11) = (0.951, 8.75). The pre-wetting line is displayed in figure 8. This wetting scenario
is very similar to that which we found for the binary GCM fluid at a planar wall with a repulsive
Yukawa potential mimicking the effective potential between the Gaussian particles and a hard
wall [12].

The wetting point and the pre-wetting line were determined by analysing the density
profiles and the adsorption of species 1, �1, defined by

�1 =
∫ ∞

0
dz (ρ1(z) − ρ1), (24)

where ρ1 = ρ1(∞), the density of species 1 in the bulk, i.e., far away from the wall. At the
pre-wetting line, the adsorption exhibits a discontinuous jump. In figure 9, the adsorption



Binary star-polymer solutions: bulk and interfacial properties 12045

0 2 4 6 8 10 12 14 16
z /σ11

0

2

4

6

8

10

12

14

16

ρ 1σ
113

0 2 4 6 8 10 12 14 16
z /σ1

0

2

4

6

8

10

12

14

16

ρ 2σ
113

Figure 7. The density profiles of species 1, the larger particles, adsorbed at a wall described by the
potential (22), calculated along a path of constant total density, ρσ 3

11 = 7.0, i.e., path A in figure 8.
From left to right the profiles refer to x = 0.99, 0.95, 0.9, 0.88, 0.879, 0.878 955, 0.878 951 and
0.878 9505, where x is the concentration of species 2 and xcoex = 0.878 950 19. The thickness
of the adsorbed film increases continuously as x → x+

coex, indicating complete wetting. The inset
shows the density profiles of species 2 for the same values of x . Note that species 2 is depleted
from the region adjoining the wall.
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Figure 8. The phase diagram obtained from the RPA (as in figure 3). The two filled circles show
the location of the pre-wetting line. The upper point on the binodal is the wetting point where the
pre-wetting line meets the binodal tangentially and the lower point is the critical point at the end of
the pre-wetting line. The inset shows the pre-wetting line at greater magnification. The horizontal
path labelled A is that along which the density profiles in figure 7 are calculated.

calculated along constant-total-density paths (ρσ 3
11 = 9.0, 8.9, 8.8 and 8.7) approaching

the binodal is plotted. Figures 9(a)–(c) correspond to paths that intersect the pre-wetting
line, whereas the path of figure 9(d) passes just below the pre-wetting line critical point.
We determine the location of the pre-wetting line by monitoring the jump in �1 and, in the
region of the pre-wetting critical point, the erosion of two branches in the free energy. On
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Figure 9. Plots of the adsorption of species 1, �1, versus the logarithm of the deviation from bulk
coexistence ln(x − xcoex), at constant total density ρ, for paths intersecting ((a)–(c)) and passing
just below (supercritical) (d) the pre-wetting line. The jumps in (a)–(c) indicate the first-order
pre-wetting transition.

solving numerically for the density profiles, one moves first along one branch, and then jumps
to the other before converging to the equilibrium solution. Note also that the interfacial
compressibility, χ12 = ∂�1/∂µ2 ∝ (∂�1/∂x)ρ still has a pronounced peak below the critical
point—see figure 9(d). The jump in the adsorption decreases for intersecting paths approaching
the pre-wetting critical point. These results should be compared with those of figure 10, where
�1 is plotted along the ρσ 3

11 = 7.0 path (path A in figure 8), along which the density profiles in
figure 7 are calculated. This path is far away from the wetting transition, and the film thickness
increases smoothly with no jumps as the binodal is approached, the thickness eventually
diverging at the binodal.

We find that in the limit x → x+
coex, below the wetting point �1 increases linearly with

− ln �x , where �x = (x − xcoex) is the deviation from coexistence. This linear increase with
− ln �x is illustrated in figure 10. For �x → 0+, �1, as defined by (24), scales proportionally
to the film thickness l, i.e., �1 ∼ l(ρA

1 − ρB
1 ), where ρA

1 is the bulk coexisting density of
species 1 in phase A, rich in species 1 and wetting the wall, and ρB

1 is the bulk density in
phase B, poor in species 1. Equivalent behaviour was found for the GCM [12] where we
were able to describe the results by considering an effective interface potential (excess grand
potential per unit) area of the form

�s(l; x) = l(ωA − ωB) + γw,A + γA,B + ae−l/ξw + O(e−2l/ξw ), (25)

where γw,A is the surface tension of the wall–phase A interface, γA,B that of the free A–B
interface, a is a coefficient dependent on ρ and ξw is the bulk correlation length in the phase
wetting the wall [48–50]. Equation (25) is valid for a complete wetting situation; minimization
of �s with respect to l yields the equilibrium film thickness l for a given undersaturation �x .
ωB is the grand potential per unit volume in bulk phase B at given chemical potentials µ1 and
µ2, while ωA is the corresponding quantity in phase A at the same chemical potentials. To
lowest order in the chemical potential deviations,

ωA − ωB � (ρA
1 − ρB

1 ) �µ1 + (ρA
2 − ρB

2 ) �µ2. (26)
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Figure 10. The adsorption of species 1, �1, along path A in figure 8 with constant total density,
ρσ 3

11 = 7, as a function of the logarithm of the deviation from bulk coexistence, ln(x − xcoex).
The adsorption corresponds to the density profiles in figure 7. On approaching the binodal, �1
increases linearly with − ln(x − xcoex).

Since �µi ≡ (µi − µi,coex) ∝ �x to lowest order, it follows that the first term on the
right-hand side of equation (25) is proportional to l �x . Minimization of equation (25) then
yields l ∼ −ξw ln �x . We were able to confirm that the prefactor to the logarithm is indeed
ξw = 1/α0, where α0 is the imaginary part of the pole with the smallest imaginary part (see
section 3), in the structure factors, for the bulk wetting phase A.

The wall potential (22) that we employ decays as erfc(κi z) ∼ exp(−κ2
i z2)/

√
πκi z as

z → ∞. If the wall potential we had chosen had a slower decay, then the effective interface
potential (25) might have had additional wall contributions. For example, if the wall potential
has an exponential decay of the form Vi(z) ∼ exp(−z/λ) as z → ∞, then one needs to add
terms of the form b exp(−l/λ) + O(exp(−2l/λ)) to (25) [12, 48, 50]. Then if λ > ξw , we find
that minimization of (25) yields l ∼ −λ ln �x [12]. Also, equation (25) strictly applies for
fluid states where the wetting phase (A) at bulk coexistence lies on the monotonic side of the
FW line. This is the case for path A in figure 8. However, if the wetting phase lies on the
oscillatory side of the FW line, the term in exp(−l/ξw) should be multiplied by a factor of
cos(α1l + φ), where α1 is the real part of the dominating pole and φ is a phase factor [51].

6. Summary and concluding remarks

We have shown that a binary fluid of star polymers, where the interactions between the star
polymers are modelled by purely repulsive effective pair potentials, can phase separate into two
fluid phases. When the binodal lies at sufficiently high densities (ρσ 3

11 � 5), the quasi-exact
HNC closure to the OZ equations gives results for the bulk structure and thermodynamics
(including the binodal) which are very similar to those from the much simpler RPA. We chose
pair potential parameters to correspond to a binary fluid of star polymers with f = 2 arms with
length ratio 2:1 in order to compare with previous results for the binary GCM [11]. The GCM is
an effective pair potential between the centres of mass of polymer chains, so on choosing f = 2
the star-polymer pair potential should also be that between the central monomers on a pair of
polymers. We are therefore comparing two perspectives: ‘central monomer’ versus ‘centre of
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mass’ as the coordinate for the effective pair potential between the polymers. Since it is the
same underlying polymer system that both are describing, the thermodynamics and, therefore,
phase diagrams should be similar, and this is indeed what is found. As the structure of the fluid
is dependent on the particular ‘perspective’ that one takes for describing the fluid, one should
expect somewhat different structure factors and pair correlation functions. However, the two
approaches give a surprisingly similar picture in terms of the location of the FW line relative
to the binodal and the values for the bulk correlation length ξ . At this level it appears to matter
little that one approach employs an effective pair potential that is finite at r = 0 (the GCM)
whereas the other has a weakly diverging pair potential (the star polymer). We also found
the same line denoting the crossover in the asymptotic decay of the pair correlation functions
hi j (r) from damped oscillatory decay with one wavelength to damped oscillatory with another
wavelength, joining the cusp in the FW line, that was found for the GCM [11]. By calculating
the Lifshitz lines we showed that the location of these is closely related to that of the FW line.

Having shown that the RPA closure is a very good approximation for bulk pair correlation
functions, we used the simple Helmholtz free energy functional (7) which generates the RPA
to calculate one-body density profiles for the inhomogeneous fluid mixture. In the case of
the free fluid–fluid interface the density profiles of both species showed oscillations on both
sides of the interface for certain states. The onset of the oscillations was accounted for by
the location of the FW line. We also calculated the density profiles of the fluid at a repulsive
wall potential equivalent to the effective potential between a star polymer and a hard wall, and
showed that there was a first-order wetting transition, with the associated pre-wetting line. The
picture that emerged from these studies of the inhomogeneous fluid is very similar to that for
the binary GCM [11, 12].

We should comment on how realistic the present approach is for polymer systems.
The state-independent pair potential approximation used here is most reliable for modelling
polymers in dilute solutions (ρσ 3 < 1), and is only approximately correct in the semi-dilute
regime [3, 53]. Our results predict demixing phase separation in the semi-dilute regime, in
agreement with the results of [54, 55]. In the semi-dilute regime we could expect the log-
Gauss (and Gaussian) pair potentials to acquire some additional density-dependence in their
parameters, mimicking the effects of many-body forces. Since we have ignored any such
dependence in this work, we expect our results to be only semi-quantitatively correct for
modelling polymer mixtures in the semi-dilute regime.

The rich bulk and interfacial phenomena displayed by the simple model presented here
and in [11, 12] show that the ‘colloidal approach’ of deriving effective pair potentials between
complex polymeric molecules can be very fruitful. Moreover, the remarkable success of
the simple and analytically tractable RPA in accounting for bulk correlation functions and
thermodynamic properties of the present model opens new perspectives for the study of the
properties of inhomogeneous mixtures of such ultrasoft-particle fluids. Given the variety of
ways that exist in colloidal science to externally manipulate the conformations of chain-like
molecules, we expect the RPA approach to be a tool whose applicability will be much wider
than simply to the system of chains in athermal solvents presented here.
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Appendix

The FTs of the three pair potentials vi j (r) given in equation (1) can be calculated analytically.
The pair potentials have the form

vi j (r) = 5
18 kB T f 3/2 F(r/σi j ; τi jσi j), (27)

with a common function F(x; y) for all combinations i, j = 1, 2. Let Q ≡ kσi j and
τ̄i j ≡ τi jσi j . Equation (27) above implies that the FT v̂i j(k) of the potentials satisfy the
relation

v̂i j (k) = 5
18 kB T f 3/2σ 3

i j F̃(Q; τ̄i j). (28)

Using the specific form of the function F(x, y) given in equation (1) we obtain the function
F̃(Q; τ̄i j) as

F̃(Q; τ̄i j) = 2π

τ̄ 2
i j

(
sin Q − Q cos Q

Q3

)
− 4π

(
sin Q − Si(Q)

Q3

)
+

π

τ̄ 4
i j

sin Q

Q

+
1

2τ̄ 2
i j

(
π

τ̄ 2
i j

)3/2

exp[τ̄ 2
i j − Q2/(4τ̄i j)]

×
{

1 − 1

2

[
erf

(
τ̄i j +

iQ

2τ̄i j

)
+ erf

(
τ̄i j − iQ

2τ̄i j

)]}
, (29)

with the sine integral

Si(z) =
∫ z

0

sin t

t
dt (30)

and the complex error function erf(z). Note that although the arguments of the error functions
in equation (29) are complex, the FT is real due to the property erf(z∗) = erf∗(z), with the
asterisk denoting the complex conjugate [52].
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